metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4-Aminobenzoato- $\kappa^2 O, O'$)chlorido-(di-2-pyridylamine- $\kappa^2 N, N'$)copper(II) monohydrate

Nobuo Okabe,* Akio Tsuji and Masahiro Yodoshi

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan Correspondence e-mail: okabe@phar.kindai.ac.jp

Received 2 July 2007; accepted 5 July 2007

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.021; *wR* factor = 0.062; data-to-parameter ratio = 16.2.

In the title compound, $[Cu(C_7H_6NO_2)Cl(C_{10}H_9N_3)]\cdot H_2O$, the Cu atom has a distorted square-pyramidal geometry defined by one *N*,*N*-bidentate 2,2'-bipyridylamine (C₁₀H₉N₃) molecule, one *O*,*O*-bidentate *p*-aminobenzenecarboxylate (C₇H₆NO₂⁻) anion and one apical chlorido ligand. The Cu atom deviates from the mean plane of the basal atoms towards the Cl atom by 0.2591 (1) Å. The component species are connected to each other by N-H···Cl, O-H···Cl, N-H···O and O-H···O hydrogen bonds.

Related literature

For related literature, see: Brophy *et al.* (1999); Mao *et al.* (2004); Okabe *et al.* (2007); Wang & Okabe (2005); Yodoshi, Mototsuji & Okabe (2007); Yodoshi, Odoko & Okabe (2007); Youngme *et al.* (2004).

Experimental

$\begin{array}{lll} Crystal \ data \\ [Cu(C_7H_6NO_2)Cl(C_{10}H_9N_3)]\cdot H_2O & V = 1712 \ (3) \ \text{\AA}^3 \\ M_r = 424.35 & Z = 4 \\ \text{Monoclinic, $P2_1/n$} & \text{Mo $K$$a$ radiation$} \\ a = 9.86 \ (1) \ \text{\AA} & \mu = 1.46 \ \text{mm}^{-1} \\ b = 12.10 \ (1) \ \text{\AA} & T = 123.1 \ \text{K} \\ c = 14.60 \ (1) \ \text{\AA} & 0.30 \times 0.30 \times 0.10 \ \text{mm} \\ \beta = 100.63 \ (3)^\circ \end{array}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan

(ABSCOR; Higashi, 1995) $T_{min} = 0.728, T_{max} = 0.851$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	242 parameters
$wR(F^2) = 0.062$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
3922 reflections	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

16167 measured reflections

 $R_{\rm int} = 0.017$

3922 independent reflections

3424 reflections with $F^2 > 2\sigma(F^2)$

Table 1

Selected geometric parameters (Å, °).

Cu1-Cl1	2.596 (3)	Cu1-N1	1.948 (1)
Cu1-O1	2.080(1)	Cu1-N2	1.973 (1)
Cu1-O2	1.972 (1)		
O1-Cu1-O2	64.96 (4)	N1-Cu1-N2	93.69 (5)

Table 2		
Hydrogen-bond geometry	(Å.	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3-H9···Cl1 ⁱ	0.86	2.35	3.196 (3)	169
$N4-H14\cdots O3^{ii}$	0.86	2.11	2.968 (2)	174
N4-H15···Cl1 ⁱⁱⁱ	0.86	2.71	3.547 (2)	166
O3−H16···Cl1	0.82	2.47	3.263 (4)	164
$O3-H17\cdots O1^{iv}$	0.80	2.13	2.911 (2)	166

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x, y - 1, z; (iii) -x + 1, -y, -z + 1; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2005) and *CRYSTALS* (Betteridge *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997), and *PLATON* (Spek, 2003); software used to prepare material for publication: *CrystalStructure*.

The authors thank Kinki University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2471).

References

- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Brophy, M., O'Sullivan, C., Hathaway, B. & Murphy, B. (1999). *Polyhedron*, 18, 611–615.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Mao, H. Y., Shen, X. Q., Li, G., Zhang, H. Y., Chen, X., Liu, H. L., Wang, E. B., Wu, Q. A., Hou, H. W. & Zhu, Y. (2004). *Polyhedron*, 23, 1961–1967.
- Okabe, N., Tsuji, A. & Yodoshi, M. (2007). Acta Cryst. E63, m1756-m1757.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2005). CrystalStructure. Version 3.7. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wang, Y. & Okabe, N. (2005). Inorg. Chim. Acta, **358**, 3407–3416. Yodoshi, M., Mototsuji, M. & Okabe, N. (2007). Acta Cryst. E**63**, m634– m636.

Yodoshi, M., Odoko, M. & Okabe, N. (2007). *Chem. Pharm. Bull.* **55**, 853–860. Youngme, S., Chailuecha, C., Albada, G. A., Pakawatchai, C., Chaichit, N. & Reedijk, J. (2004). *Inorg. Chim. Acta*, **357**, 2532–2542.

supplementary materials

Acta Cryst. (2007). E63, m2108-m2109 [doi:10.1107/S1600536807032837]

(4-Aminobenzoato- $\pi^2 O, O'$)chlorido(di-2-pyridylamine- $\pi^2 N, N'$)copper(II) monohydrate

N. Okabe, A. Tsuji and M. Yodoshi

Comment

As part of our studies of new therapeutic drugs, we have reported the structures of the ternary Cu(II) complexes with the heterocyclic ligand, 2,2'-bipyridylamine (bpa) and various carboxylate-containing compounds, such as bpa and *p*-hydroxy-benzenecarboxylate (*p*-HB) (Wang & Okabe, 2005), cyclobutane-1,1-dicarboxylate (Yodoshi, Mototsuji & Okabe, 2007), benzenecarboxylate (BA) (Okabe *et al.*, 2007), and glycine (Yodoshi, Odoko & Okabe, 2007). In this study, we report the structure of the title Cu(II) complex, (I), with bpa and the *p*-aminobenzenecarboxylate (*p*-ABA) and chloride anions. An uncoordinated water molecule completes the structure.

The overall structure of (I) is similar to those of the Cu(II) complexes with bpa and *p*-HB (Wang & Okabe, 2005) and BA (Okabe *et al.*, 2007). The central Cu atom in (I) (Fig. 1) has a square pyramidal CuN₂O₂Cl geometry (Table 1), resulting from its coordination by two N atoms from one bpa and two O atoms from one *p*-ABA and one chloride anion. The four basal ligand atoms (N1, N2,O1 and O2) are neary coplanar, and the Cu atom deviates from the mean square plane towards the apical Cl atom by 0.2591 (1) Å. The bite angles N1—Cu1—N2 and O1—Cu1—O2 are in the range normally observed for these complexes (Wang & Okabe, 2005; Okabe *et al.*, 2007; Yodoshi, Mototsuji & Okabe, 2007; Yodoshi, Odoko & Okabe, 2007; Youngme *et al.*, 2004). The Cu—Cl distance of 2.597 (1)%A in (I) is slightly longer than the median of the known values from 2.336 (2) to 2.733 (2) Å (Mao *et al.*, 2004; Brophy *et al.*, 1999) Such long Cu—Cl bonds are explained by the well known Jahn-Teller effect.

As shown in Fig. 2, the crystal structure of (I) is stabilized by N—H···Cl, O—H···Cl, N—H···O, and O—H···O hydrogen bonds (Table 2), and no π - π stacking interactions are present.

Experimental

2,2'-Bipyridylamine (5.0 mg, 0.03 mol) dissolved in 90%(ν/ν) methanol-water solution (2 ml) was reacted with *p*-aminobenzoic acid (4.0 mg, 0.03 mol), dissolved in the same solution (2 ml) for 5 min at room temperature. This was followed by the addition of CuCl₂·2H₂O (5.0 mg, 0.03 mol) dissolved in H₂O (1 ml) and reacted for 15 min at room temperature. After several days green prismatic crystals of (I) appeared from the mother liquor.

Refinement

The water H atoms were located in a difference map and refined as riding in their as-found relative postions with $U_{iso}(H) = 1.5U_{eq}(O)$. The C- and N-bound H atoms were located in difference maps, relocated in idealized positions and treated as riding, with C—H = 0.93 Å, N—H = 0.86Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. View of the molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).

Fig. 2. A view of the hydrogen bonds (dashed lines) in (I). Symmetry codes as in Table 2.

(4-Aminobenzoato- $\kappa^2 O, O'$)chlorido(di-2-pyridylamine- $\kappa^2 N, N'$)copper(II) monohydrat

Crystal data	
$[Cu(C_7H_6NO_2)Cl(C_{10}H_9N_3)] \cdot H_2O$	$F_{000} = 868.00$
$M_r = 424.35$	$D_{\rm x} = 1.646 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.7107$ Å
Hall symbol: -P 2yn	Cell parameters from 14678 reflections
a = 9.86 (1) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 12.10(1) Å	$\mu = 1.46 \text{ mm}^{-1}$
c = 14.60 (1) Å	T = 123.1 K
$\beta = 100.63 \ (3)^{\circ}$	Prism, green
$V = 1712 (3) \text{ Å}^3$	$0.30\times0.30\times0.10\ mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID diffractometer	3424 reflections with $F^2 > 2.0\sigma(F^2)$
Detector resolution: 10.00 pixels mm ⁻¹	$R_{\rm int} = 0.017$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -12 \rightarrow 12$
$T_{\min} = 0.728, T_{\max} = 0.851$	$k = -14 \rightarrow 15$
16167 measured reflections	$l = -18 \rightarrow 18$
3922 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.021$	$w = 1/[\sigma^2(F_0^2) + (0.036P)^2 + 0.6204P]$

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.062$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
3922 reflections	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$
242 parameters	Extinction correction: none

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (S) are based on F^2 . *R*-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating *R*-factor (gt).

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.93181 (2)	0.23066 (1)	0.48560(1)	0.01293 (6)
C11	0.70895 (4)	0.33281 (3)	0.40723 (2)	0.01702 (8)
01	0.9042 (1)	0.08460 (8)	0.40938 (7)	0.0156 (2)
02	0.8285 (1)	0.11464 (8)	0.53813 (7)	0.0177 (2)
03	0.5317(1)	0.51357 (9)	0.26822 (8)	0.0225 (2)
N1	1.0627 (1)	0.3078 (1)	0.42339 (8)	0.0131 (2)
N2	0.9776 (1)	0.32012 (9)	0.60007 (8)	0.0137 (2)
N3	1.1401 (1)	0.43479 (9)	0.54583 (8)	0.0140 (2)
N4	0.4964 (1)	-0.3283 (1)	0.41741 (9)	0.0212 (3)
C1	1.0691 (1)	0.2727 (1)	0.3360 (1)	0.0160 (3)
C2	1.1551 (1)	0.3188 (1)	0.2827 (1)	0.0178 (3)
C3	1.2434 (1)	0.4038 (1)	0.3211 (1)	0.0185 (3)
C4	1.2391 (1)	0.4396 (1)	0.4095 (1)	0.0169 (3)
C5	1.1449 (1)	0.3914 (1)	0.45928 (9)	0.0129 (2)
C6	1.0676 (1)	0.4034 (1)	0.61365 (9)	0.0128 (2)
C7	1.0937 (1)	0.4632 (1)	0.69802 (9)	0.0162 (3)
C8	1.0244 (2)	0.4345 (1)	0.7678 (1)	0.0196 (3)
C9	0.9302 (2)	0.3477 (1)	0.7538 (1)	0.0221 (3)
C10	0.9100 (2)	0.2933 (1)	0.6701 (1)	0.0189 (3)
C11	0.8334 (1)	0.0513 (1)	0.46906 (9)	0.0137 (3)
C12	0.7553 (1)	-0.0525 (1)	0.45855 (9)	0.0131 (3)
C13	0.6597 (1)	-0.0730(1)	0.51656 (9)	0.0159 (3)
C14	0.5743 (1)	-0.1639(1)	0.50303 (9)	0.0170 (3)
C15	0.5830(1)	-0.2395 (1)	0.4310 (1)	0.0151 (3)
C16	0.6805 (1)	-0.2201 (1)	0.37370 (9)	0.0141 (3)
C17	0.7645 (1)	-0.1280(1)	0.38739 (9)	0.0138 (3)
H1	1.0125	0.2146	0.3110	0.019*
H2	1.1545	0.2941	0.2223	0.021*
H3	1.3044	0.4356	0.2871	0.022*
H4	1.2981	0.4954	0.4364	0.020*
Н5	1.1568	0.5211	0.7062	0.019*
H6	1.0402	0.4728	0.8239	0.024*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H7	0.8822	0.3271	0.8002	0.027*
H8	0.8471	0.2353	0.6607	0.023*
Н9	1.1917	0.4918	0.5601	0.017*
H10	0.6539	-0.0245	0.5650	0.019*
H11	0.5105	-0.1754	0.5417	0.020*
H12	0.6884	-0.2696	0.3263	0.017*
H13	0.8282	-0.1159	0.3487	0.017*
H14	0.5007	-0.3740	0.3729	0.025*
H15	0.4376	-0.3386	0.4533	0.025*
H16	0.5769	0.4615	0.2935	0.034*
H17	0.5563	0.5234	0.2197	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0154(1)	0.0118(1)	0.0125(1)	-0.00460 (6)	0.00479 (6)	-0.00184 (5)
Cl1	0.0150 (2)	0.0150 (2)	0.0205 (2)	-0.0028 (1)	0.0018(1)	0.0013 (1)
01	0.0181 (5)	0.0133 (5)	0.0165 (5)	-0.0038 (4)	0.0061 (4)	-0.0009 (3)
02	0.0236 (6)	0.0142 (5)	0.0165 (5)	-0.0071 (4)	0.0071 (4)	-0.0031 (4)
03	0.0275 (6)	0.0224 (6)	0.0199 (6)	0.0061 (5)	0.0103 (4)	0.0033 (4)
N1	0.0128 (6)	0.0132 (6)	0.0135 (5)	-0.0009 (4)	0.0033 (4)	0.0000 (4)
N2	0.0147 (6)	0.0139 (6)	0.0126 (5)	-0.0023 (4)	0.0029 (4)	-0.0006 (4)
N3	0.0149 (6)	0.0122 (6)	0.0151 (6)	-0.0055 (4)	0.0034 (4)	-0.0019 (4)
N4	0.0250 (7)	0.0188 (6)	0.0210 (6)	-0.0108 (5)	0.0078 (5)	-0.0044 (5)
C1	0.0156 (7)	0.0163 (7)	0.0163 (7)	-0.0020 (5)	0.0032 (5)	-0.0028 (5)
C2	0.0184 (7)	0.0213 (7)	0.0150 (7)	-0.0001 (6)	0.0063 (5)	-0.0019 (5)
C3	0.0158 (7)	0.0218 (7)	0.0198 (7)	-0.0023 (6)	0.0079 (5)	0.0018 (5)
C4	0.0141 (7)	0.0171 (7)	0.0198 (7)	-0.0045 (5)	0.0039 (5)	-0.0001 (5)
C5	0.0121 (6)	0.0136 (6)	0.0131 (6)	0.0006 (5)	0.0022 (5)	0.0010 (5)
C6	0.0116 (6)	0.0126 (6)	0.0137 (6)	0.0010 (5)	0.0011 (5)	0.0006 (5)
C7	0.0150 (7)	0.0169 (7)	0.0163 (7)	-0.0038 (5)	0.0012 (5)	-0.0031 (5)
C8	0.0212 (8)	0.0243 (8)	0.0128 (7)	-0.0043 (6)	0.0021 (5)	-0.0049 (5)
C9	0.0258 (8)	0.0279 (8)	0.0141 (7)	-0.0094 (6)	0.0077 (6)	-0.0025 (6)
C10	0.0213 (8)	0.0198 (7)	0.0168 (7)	-0.0073 (6)	0.0066 (5)	-0.0022 (5)
C11	0.0132 (7)	0.0130 (6)	0.0142 (6)	0.0002 (5)	0.0008 (5)	0.0013 (5)
C12	0.0139 (7)	0.0111 (6)	0.0137 (6)	-0.0012 (5)	0.0008 (5)	0.0015 (4)
C13	0.0199 (7)	0.0149 (7)	0.0133 (6)	-0.0020 (5)	0.0041 (5)	-0.0012 (5)
C14	0.0192 (7)	0.0180 (7)	0.0150 (7)	-0.0041 (5)	0.0061 (5)	0.0001 (5)
C15	0.0159 (7)	0.0133 (6)	0.0149 (7)	-0.0019 (5)	-0.0003 (5)	0.0019 (5)
C16	0.0157 (7)	0.0133 (7)	0.0127 (6)	0.0005 (5)	0.0011 (5)	-0.0007 (4)
C17	0.0136 (7)	0.0144 (6)	0.0134 (6)	0.0020 (5)	0.0025 (5)	0.0027 (5)
	. 9					
Geometric p	oarameters (A, °)					

Cu1—Cl1	2.596 (3)	C3—C4	1.370 (2)
Cu1—O1	2.080(1)	С3—Н3	0.9300
Cu1—O2	1.972 (1)	C4—C5	1.408 (2)
Cu1—N1	1.948 (1)	C4—H4	0.9300
Cu1—N2	1.973 (1)	C6—C7	1.411 (2)

O1—C11	1.278 (2)	C7—C8	1.371 (2)
O2—C11	1.275 (2)	С7—Н5	0.9299
O3—H16	0.8189	C8—C9	1.393 (2)
O3—H17	0.7997	С8—Н6	0.9300
N1—C1	1.358 (2)	C9—C10	1.370 (2)
N1—C5	1.341 (2)	С9—Н7	0.9299
N2—C6	1.334 (2)	С10—Н8	0.9300
N2—C10	1.359 (2)	C11—C12	1.468 (2)
N3—C5	1.378 (2)	C12—C13	1.401 (2)
N3—C6	1.378 (2)	C12—C17	1.399 (2)
N3—H9	0.8601	C13—C14	1.378 (2)
N4—C15	1.364 (2)	С13—Н10	0.9299
N4—H14	0.8600	C14—C15	1.408 (2)
N4—H15	0.8600	C14—H11	0.9299
C1—C2	1.371 (2)	C15—C16	1.406 (2)
C1—H1	0.9300	C16—C17	1.382 (2)
С2—С3	1.397 (2)	C16—H12	0.9299
С2—Н2	0.9301	С17—Н13	0.9300
01—Cu1—O2	64 96 (4)	H4—C4—C3	120 1972
01 - Cu1 - N1	100.99 (5)	C7 - C6 - N2	120.1772
$\Omega_1 - \Omega_1 - N_2$	100.99(5) 155.07(4)	C7 - C6 - N3	121.8(1)
Ω^2	163 19 (5)	$C^{8}-C^{7}-C^{6}$	118.9(1)
$\Omega_2 = Cu1 = N1$	96 61 (5)	C8-C7-H5	120 5419
$N_1 = C_{u1} = N_2$	90.01 (5)	H5 C7 C6	120.5417
N1 - Cu1 - N2	95.09 (5)	113 - 0 - 0 = 0	120.3017
$C_{11} = O_1 = C_{11}$	00.39 (0) 01.27 (0)	C_{9}	119.3 (1)
U16 02 U17	91.27 (9)	$C_9 = C_8 = C_7$	120.2373
H10 - 03 - H17	100.3428	10 - 0 - 0	120.2030
CI = NI = CUI	110.01 (9)	C10 - C9 - C8	118.3 (2)
CI-NI-CS	118.2 (1)	C10-C9-H7	120.7587
CS—NI—Cui	125.8 (1)	H/C9C8	120.7571
$C_0 = N_2 = C_{11}$	125.0 (1)	H8 = C10 = N2	118.4789
$C_0 = N_2 = C_{10}$	118.5 (1)		118.4///
CIO-N2-Cui	116.05 (9)		122.7(1)
C5 = N3 = C6	131.6(1)	C12C11O2	120.1 (1)
C5—N3—H9	114.1757	C13-C12-C11	119.2 (1)
C6—N3—H9	114.1759	C13—C12—C17	118.5 (1)
C15—N4—H14	120.0009	C17—C12—C11	122.1 (1)
C15—N4—H15	119.9993	C14—C13—C12	121.1(1)
H14—N4—H15	119.9998	C14—C13—H10	119.4483
C2—C1—N1	123.2 (1)	H10—C13—C12	119.4502
C2—C1—H1	118.3955	C15—C14—C13	120.4 (1)
H1—C1—N1	118.3871	C15—C14—H11	119.8033
C3—C2—C1	118.5 (1)	H11—C14—C13	119.8016
С3—С2—Н2	120.7520	C16—C15—N4	121.5 (1)
H2—C2—C1	120.7608	C16—C15—C14	118.6(1)
C4—C3—C2	119.1 (1)	C17—C16—C15	120.4 (1)
С4—С3—Н3	120.4688	C17—C16—H12	119.7788
H3—C3—C2	120.4693	H12—C16—C15	119.7821
C5—C4—C3	119.6 (1)	H13—C17—C12	119.5207

supplementary materials

120.2014	H13—C17—C16	119.5239
3.07 (6)	C1—C2—C3—C4	-1.4 (2)
-3.07 (7)	C2—C3—C4—C5	-0.8 (2)
20.2 (1)	C3—C4—C5—N1	2.7 (2)
128.1 (1)	C3—C4—C5—N3	-176.6 (1)
-4.8 (1)	N2—C6—C7—C8	0.1 (2)
5.1 (1)	C6—C7—C8—C9	-0.1 (2)
179.5 (1)	C7—C8—C9—C10	0.1 (2)
-2.7 (2)	C8—C9—C10—N2	-0.0 (2)
178.1 (1)	O1-C11-C12-C13	-167.7 (1)
-0.4 (2)	C11—C12—C13—C14	173.4 (1)
-179.9 (1)	C11—C12—C17—C16	-173.9 (1)
5.3 (2)	C12-C13-C14-C15	1.0 (2)
-175.5 (1)	C13-C14-C15-N4	-179.0 (1)
-3.6 (2)	N4-C15-C16-C17	178.3 (1)
179.0	C15-C16-C17-C12	0.4 (2)
2.0 (2)		
	120.2014 $3.07 (6)$ $-3.07 (7)$ $20.2 (1)$ $128.1 (1)$ $-4.8 (1)$ $5.1 (1)$ $179.5 (1)$ $-2.7 (2)$ $178.1 (1)$ $-0.4 (2)$ $-179.9 (1)$ $5.3 (2)$ $-175.5 (1)$ $-3.6 (2)$ 179.0 $2.0 (2)$	120.2014 $H13-C17-C16$ $3.07 (6)$ $C1-C2-C3-C4$ $-3.07 (7)$ $C2-C3-C4-C5$ $20.2 (1)$ $C3-C4-C5-N1$ $128.1 (1)$ $C3-C4-C5-N3$ $-4.8 (1)$ $N2-C6-C7-C8$ $5.1 (1)$ $C6-C7-C8-C9$ $179.5 (1)$ $C7-C8-C9-C10$ $-2.7 (2)$ $C8-C9-C10-N2$ $178.1 (1)$ $01-C11-C12-C13$ $-0.4 (2)$ $C11-C12-C13-C14$ $-179.9 (1)$ $C12-C13-C14-C15$ $-175.5 (1)$ $C13-C14-C15-N4$ $-3.6 (2)$ $N4-C15-C16-C17$ $2.0 (2)$ $C12-C13-C12$

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N3—H9···Cl1 ⁱ	0.86	2.35	3.196 (3)	169
N4—H14···O3 ⁱⁱ	0.86	2.11	2.968 (2)	174
N4—H15…Cl1 ⁱⁱⁱ	0.86	2.71	3.547 (2)	166
O3—H16…Cl1	0.82	2.47	3.263 (4)	164
O3—H17···O1 ^{iv}	0.80	2.13	2.911 (2)	166

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y-1, z; (iii) -x+1, -y, -z+1; (iv) -x+3/2, y+1/2, -z+1/2.

